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Abstract

The Black Sea basin has a strategic geographic location bridging Asia and Europe and

depends on traditional livestock practices for their local economies. Anthrax, a zoonotic bac-

terial disease caused by Bacillus anthracis, poses a significant global threat impacting public

health, food security, pastoralist communities, and national economies. The disease is

endemic or sporadic in the Black Sea basin, however, the study of its distribution has seldom

been addressed, despite its burden and the presence of historical B. anthracis burial sites in

the region. The viability of B. anthracis in a particular region is going to be influenced by mul-

tiple environmental factors, such as soil composition, climate, vegetation, and host abun-

dance. For characterizing the potential distribution of B. anthracis in the Black Sea basin

and assessing the potential for anthrax outbreaks, we applied an ecological niche modelling

framework using the Maxent algorithm. This machine-learning algorithm models species

distributions based on presence data and background information from a specified calibra-

tion region. We analyzed multiple variable combinations and proposed a novel approach for

interpreting in-risk anthrax areas. Our findings underscored the importance of host abun-

dance to the anthrax dynamics in the region. We identified anthrax-suitable areas spanning

central and eastern Türkiye, Armenia, southern Georgia, southern Russia, Bulgaria, south-

ern and eastern Romania, Hungary, Moldova, and southern Ukraine, which align with find-

ings from previous global and regional studies on the potential suitability of anthrax. The

insights gained from our research may help to develop targeted interventions, such as

awareness and educational campaigns about anthrax, supervision of anthrax-infected car-

casses disposal, and the promotion of livestock vaccination in high-risk areas. Additionally,

these results can inform policies to mitigate the spread of anthrax in pastoralist communities

in the Black Sea basin and foster collaboration between veterinary and public health entities

on anthrax control.
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Introduction

Anthrax, a zoonotic bacterial disease, is caused by Bacillus anthracis, a spore-forming, Gram-

positive, and rod-shaped bacterium [1]. While wild and domestic ungulates are the primary

hosts of B. anthracis, it can also affect other mammals, including humans [2, 3]. Ruminants

typically become infected through environmental exposure by ingesting the pathogen’s spores

when grazing or browsing, and humans are usually infected through occupational exposure to

infected animal carcasses or animal products [1].

Anthrax is present in all continents, causing high yearly mortality in domestic livestock and

wild animals, along with high morbidity in humans [1, 4]. As a result, this disease threatens

worldwide public health, food security, the livelihoods of pastoralist communities, and

national economies [1]. B. anthracis is endemic in areas of Sub-Saharan Africa, central and

southwestern Asia, Central and South America, and limited regions within the United States

(US). In Europe, the disease is sporadic in animals, with a higher prevalence in southern

Europe and links to historical foci in northern areas [2].

In Eurasia, the agricultural reform and the defunding of veterinary and public health ser-

vices that followed the collapse of the Soviet Union in 1991, led to an increase of vaccine-pre-

ventable diseases such as anthrax [5–7]. As of 2023, anthrax remained endemic in Türkiye,

Azerbaijan, Georgia, and Moldova, and it was reported sporadically in Bulgaria, Romania,

Ukraine, Belarus [8], and the Russian Federation [9]. However, limited surveillance and dis-

ease awareness in many of these countries contribute to underreporting and gaps in under-

standing its geographic extent [10]. Adding to these challenges, the effects of climate change

are raising concerns about anthrax spreading to new areas. For instance, in 2016, thawing per-

mafrost in northern Russia is hypothesised to have released anthrax spores, causing an out-

break that affected over two thousand reindeer and resulted in human deaths [11].

As the environmental availability of spores is a hallmark of B. anthracis exposure to hosts,

characterizing its ecological niche has been proposed as a way to understand its distribution

[12]. The concept of the ecological niche was first introduced by Grinnell [13] as a “limited

range of ecological variables that could maintain a population without immigration”. This

concept was later developed by Hutchinson [14] as a quantifiable ecological area that deter-

mines species fitness and survivorship [15]. By studying the B. anthracis ecological niche, we

aim to describe the environmental patterns that support anthrax spores’ survival which even-

tually leads to hosts’ exposure in the Black Sea basin [16, 17].

The black steppe soils covering part of our study region favour the viability of B. anthracis
spores [16, 18], due to its richness in calcium (which, with its high cation exchange capacity,

attracts B. anthracis spores), high organic carbon content (a key component of soil organic

matter), and neutral to alkaline pH [16, 19]. Additionally, anthrax occurrences have been

linked to soils with increased nitrogen levels and to vegetation growth influenced by carcass

decomposition [20]; as well as to climatic conditions with relative humidity above 60% [21],

temperatures exceeding 15.5˚C [18], and dry summers followed by heavy rain, which can fur-

ther concentrate anthrax spores in the soil [22].

Traditional ecological niche modelling (ENM) relies on abiotic predictors (e.g. climate) to

characterize a species distribution and considers biotic interactions (e.g. host dynamics) to

have negligent effects in modelling, a hypothesis called the Eltonian noise effect [23]. However,

there is growing evidence that its inclusion can be crucial to describe broad-scale species distri-

butions, especially when modelling a disease system [24]. In this study, we explored ENM

approaches based on various combinations of predictor variables, incorporating only abiotic

(climate, soil, and vegetation) or introducing a biotic predictor (ruminant abundance) to assess

whether the inclusion of ruminant abundance improved model performance. Additionally, we
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proposed a novel approach to visualize and interpret Maxent algorithm outputs by leveraging

uncertainty levels to further refine the output. This allows us to suggest high-risk areas of

potential B. anthracis outbreaks in the Black Sea basin with higher accuracy, which can guide

decision-makers to prioritize awareness campaigns, surveillance, and control activities.

Methods

This study explores the potential suitability of anthrax in the Black Sea basin through distribu-

tion modelling, using anthrax occurrences in domestic animals, from nine countries of the

region, namely: Armenia, Azerbaijan, Belarus, Bulgaria, Georgia, Moldova, Romania, Türkiye,

and Ukraine.

Occurrence data and geoprocessing

We curated a database of B. anthracis confirmed georeferenced occurrences causing disease in

domestic animal species (i.e. cattle, sheep, goats, swine, and equine) that have been reported in

the participating countries between 2006 and 2021 (hereafter anthrax occurrences). The data

were procured internally by FAO, sourced directly by national experts, or available online. The

consolidated database included international repositories, such as EMPRES-i and the World

Animal Health Information System (WAHIS), regional sources, as the Animal Disease Infor-

mation System (ADIS), and national databases from Moldova and Türkiye. Finally, it includes

anthrax occurrences from Deka et al. 2022 [25] (Table 1 in S1 File).

Anthrax occurrence locations were processed in R Statistical Software (v4.2.1) [26]. We

started by removing duplicates based on location and excluding records with a level of preci-

sion below three decimal degrees of latitude or longitude. Finally, to avoid overfitting due to

spatial autocorrelation and sampling bias [25, 27], we applied a spatial thinning method of 30

km radius [28] using the R package SpThin [29]. This thinning threshold was selected based

on findings from Romero-Alvarez et al. 2020, who assessed various thinning distances for B.

anthracis occurrences at a continental level, and found that a 30 km spatial filter yielded a

broader prediction with lower uncertainty [28]. The resulting thinned occurrences were used

to develop ENMs, the final dataset comprised 226 occurrences (Fig 1).

Calibration area

The calibration region, or parameter M, is the area used to calibrate the model. The correct

delimitation of M is critical as it may impact any step of an ENM, from its parameterization,

validation, and model comparison [30], to model outputs and interpretation [31, 32]. Parame-

ter M should combine a spatial extent and environmental diversity that has been accessible to

the studied species [33] during a time period that is relevant to the study [25, 30]. Here, we

defined M by a buffer surrounding the occurrences which distance was calculated as the mean

of the distances from each occurrence to the geographic centroid [34] (Fig 1).

Variable selection

We selected four B. anthracis environmental predictors—climate (i.e. temperature and mois-

ture), soil, and vegetation—and one host population variable. Variables were selected based on

previous literature demonstrating the dependency of anthrax spatial distribution to these

determinants [10, 28, 35].

We extracted 15 bioclimatic variables (i.e. seven temperature-related and eight moisture-

related variables) from MERRAclim [36]. MERRAclim is a high-resolution global repository

of satellite-based bioclimatic variables, offering advantages over other commonly used climate
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data sources for ENM, specifically, MERRAclim shows less uncertainty in interpolated values

when compared with WorldClim [36]. Selected variables were included at a 5 arc-minute reso-

lution for the period 2000 to 2010, partially aligning with the timeframe of our occurrences. In

this study, we excluded the variables describing interactions between temperature and mois-

ture—BIO8, BIO9, BIO18, and BIO19—due to known modelling artefacts [37–39]. Addition-

ally, these variables were excluded because they combine domains that were analysed

separately through principal component analysis (see below).

We selected four soil-related layers—pH, cation exchange capacity, carbon content, and

nitrogen—due to their relevance for B. anthracis spores’ viability in soil. These variables were

extracted from the Global Soil Information Facilities, SoilGrids, database [40], available at

https://soilgrids.org/, at a 0-5cm depth and 250m resolution. SoilGrids is a repository for

chemical and physical soil properties, based on a global compilation of soil profile data sets

and environmental layers. It is the result of contributions from various national and interna-

tional agencies and is developed by the International Soil Reference and Information Centre

(ISRIC)—World Soil Information [40, 41].

Fig 1. Anthrax georeferenced occurrences and calibration area (region M). Bacillus anthracis confirmed georeferenced

occurrences (in dark orange) considered for the calculation of parameter M (outlined in teal). Maps were developed using

shape files of the world from the public domain repository of Natural Earth (http://www.naturalearthdata.com/) and built

using R Statistical Software (v4.2.1) [26].

https://doi.org/10.1371/journal.pone.0303413.g001
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As a measure of vegetation greenness, we used the Enhanced Vegetation Index (EVI) [42].

EVI’s version 6.1 was obtained through the 16-day composite images from the MOD13Q1

product at 250 m resolution [42] captured by the Moderate Resolution Imaging Spectroradi-

ometer (MODIS) sensor, located in NASA’s TERRA satellite [43]. We processed satellite

images to obtain the median from a composite of satellite images from 2005 to 2021 via Google

Earth Engine [44]. EVI offers advantages over the Normalized Difference Vegetation Index

(NDVI) in correcting atmospheric conditions and background noise [42].

Finally, we included a host population variable representing ruminant abundance, resulting

from the sum of three raster layers for cattle, sheep, and goats abundance sourced from the

Gridded Livestock World Distribution (GLW4) and adjusted to FAOSTAT 2015 country totals

at 1 km resolution [45–48]. All variables were resampled to 1 km resolution using the resample
function and bilinear method in R. Further details on anthrax environmental predictors and

data sources are detailed Table 2 in S1 File.

To reduce high dimensionality and variable autocorrelation, we used a principal compo-

nent analysis (PCA) [12, 49]. We used different sets of PCAs to determine three ENM

approaches. For the first approach, we calculated principal components (PCs) for the entire set

of 20 environmental variables. The two other approaches comprised PCs for each environ-

mental domain (i.e. temperature, moisture, soil, and vegetation). The third approach treated

environmental domains as in the second approach but also included the ruminant abundance

variable. For each of these approaches, we used the PCs retaining at least 90% of the variation

in the original data [50]. PCAs were developed using the ‘kuenm_rpca’ [51] function from

kuenm package in R [51].

Ecological niche modelling

Maximum Entropy algorithm (Maxent version 3.4.4) [52] was implemented to define ENMs.

For this purpose, we applied the package kuenm [51] (https://github.com/marlonecobos/

kuenm) in R Statistical Software (v4.2.1) [26] to calibrate Maxent ENMs and select optimal

parameters for each of the three combinations of PCs as described earlier. Maxent is one of the

most studied algorithms for ENM, as such, details on Maxent parameterization can be com-

plex [51, 53]. For this study, we consider feature classes and regularization multipliers as

parameters that might heavily influence the potential distribution of B. anthracis in the Black

Sea Basin. Specifically, we investigated combinations of Maxent feature classes including lin-

ear, linear+quadratic, linear+quadratic+product as these forces the algorithm to recreate phys-

iological plausible response curves [54, 55], and five regularization multipliers—i.e. 0.1, 0.5, 1,

1.5, and 2—as they determine a constrained or relaxed geographic prediction [56].

Model evaluation

We partitioned anthrax occurrences randomly: 70% of occurrences for model training (cali-

bration), and 30% of occurrences for model testing (evaluation) [57, 58]. Models were primar-

ily evaluated and selected via the kuenm package [51] following a three-step approach. First,

models were assessed for statistical significance (p-value<0.05) based on the partial area under

the curve of the Receiver Operating Characteristic (pROC), a variation of the measure ROC
AUC [59, 60]. To calculate this metric, we used, for each model, a threshold of 5% omission

error (e.g. maximum excluded training occurrences) and 50 bootstraps. The pROC represents

the ratio of correctly predicted occurrences to the area proportion with specified omission

errors in the output models. pROC values greater than 1 (p-value< 0.05) indicate predictions

that are better than random [59, 60]. Then, we selected those models with a lower omission

rate (OR, threshold = 5%) [61]. The OR presents the model’s effectiveness in identifying true
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positive occurrences, taking into account those occurrences that were omitted (e.g. false nega-

tives). Lastly, the resulting models were further narrowed down using the Akaike information

criterion corrected for sample size (AICc) [62] to ensure low model complexity and good fit to

the underlying data [58, 63, 64].

Final model. Final models were generated with the function ‘kuenm_mod’ from kuenm
[51]. For the three modelling approaches, we specified the output format as logistic, with a

continuous scale from 0 (non-suitable) to 1 (suitable). Additionally, we used 50 bootstrap rep-

licates to calculate the median and assess model uncertainty, i.e. the difference between the ras-

ters with maximum and minimum values. Final model outputs were categorized (i.e. suitable

vs. non-suitable) considering the suitability value from the 95% of the calibration points

(E = 5%) as threshold for binarizing the model [60].

From the three modelling approaches, we selected the best model based on the following

criteria: lowest OR, lowest number of parameters, larger predicted area, and lowest uncer-

tainty. Finally, to interpret the final model, we overlapped the best binarized model (i.e. suit-

able/unsuitable) with the uncertainty raster and considered highly suitable areas to those with

less than the third quartile of uncertainty values.

Results

A total of 1182 raw anthrax outbreak occurrences in domestic livestock, spanning from 2006

to 2021, were collated from various sources and used in the current study (Table 1 in S1 File).

Cattle, sheep, and goats outbreaks accounted for 80.7%, 14%, and 4% respectively, representing

the majority of studied outbreaks (98.7%). The remaining occurrences represented outbreaks

attributed to horses and swine (1.3%). Over the studied period, the cumulative frequency of

anthrax occurrences started increasing in July, peaked in September (n = 193) at three times

the mean for the first six months of the year (n = 65), and gradually decreased until December

(n = 62, S1 Fig).

Each of the three explored approaches resulted in 15 candidate models, reflecting combina-

tions of three feature classes and five regularization multiplier values. The three best-fitting

models were identified through the described three-step framework (Table 1).

The model output for B. anthracis developed using a PCA per environmental domain plus

the variable representing ruminant abundance in the studied area were selected as the best

overall model (i.e. approach 3; Table 1). This model yielded a wider prediction with lower

uncertainty and presented a lower OR with a lower number of parameters than the two other

approaches (Table 1). To generate this ENM approach, we retained the first three PCs for tem-

perature and soil, explaining 98.83% and 95.77% of their respective domains, the first two PCs

Table 1. Parameters of ecological niche models categorized by principal component analysis (PCA) approach.

Approach Selected features Selected RM No. Predicted pixels pROC significance OR-5% AICc No. of parameters

APPROACH 1: LQP 0.1 34,917 <0.05 0.0294 4,732.26 20

ALL VARIABLES PCA

APPROACH 2: LQP 0.5 25,895 <0.05 0.0441 4,634.63 41

PCA BY DOMAIN (ENV ONLY)

Approach 3: LQ 0.5 34,323 <0.05 0.0147 4,715.51 18

PCA by domain + host population variable

The best model for each approach was selected using a three-step selection framework (i.e. pROC, omission rates [OR], and AICc). AICc: Akaike information criterion

corrected for sample; Features: L = linear, LQ = linear+quadratic, LQP = linear+quadratic+product; PCA: principal component analysis; pROC: partial area under the

Receiver Operating Characteristic; OR: omission rate; RM: regularization multiplier.

https://doi.org/10.1371/journal.pone.0303413.t001
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explaining 99.44% of the moisture domain, and one PC each for EVI and ruminant abun-

dance. Models’ median, uncertainty, and areas suitable and non-suitable for B. anthracis at 5%

threshold are illustrated in Fig 2. Outputs for the other two approaches can be found in the Fig

1 in S2 File. We highlight that the temperature and soil domains had the highest contribution

to the final selected model accounting for 38.2 and 32.9%, whereas similar contributions were

attributed to EVI and ruminant abundance, at 10.3% and 9.9%, respectively (Table 1 in

S2 File).

We contrasted suitable areas for anthrax in the overall best model binary map with varying

levels of model uncertainty. Low uncertainty was defined here as those pixels with values

below the third quartile of the uncertainty range (i.e. Q3 = 0.23; Fig 3A). Regions identified as

highly suitable with low uncertainty (Fig 3B) span western to central Armenia, extending into

the southwest of Azerbaijan; they include a limited area in the northeast of Azerbaijan and the

southern border region of the Russian Federation; the interior regions of the Islamic Republic

of Iran and southern Russian Federation; as well as the interior eastern, central, and central-

south areas of Türkiye (Fig 3B). Additionally, anthrax suitability is also observed in centre

south and north Bulgaria and south and east Romania, centre east of North Macedonia, north

of Serbia, southeast of Hungary, centre to south of Moldova, and the south coast of Ukraine

with the Black Sea (Fig 3B).

Regions with high suitability and with low uncertainty where no anthrax occurrences have

been reported (Figs 1 and 3B) can be found in the southern interior of the Russian Federation,

the interior of the Islamic Republic of Iran, the central southern region of Bulgaria, central-

east of North Macedonia, northern Serbia and centre to east of Hungary. Conversely, regions

where anthrax cases have been reported, yet are depicted in our models as areas of low anthrax

suitability, are primarily seen in central to northern regions of Ukraine and southern regions

of Belarus. High suitability areas with high uncertainty are observed along the coast of south-

ern Türkiye with the Black Sea, the west coastal area of Türkiye with the Mediterranean Sea,

and the southern-east region of Türkiye along the border of the Republic of Iraq and the

Islamic Republic of Iran.

Fig 2. Ecological niche model outputs for Bacillus anthracis in the Black Sea basin. Model outputs for the selected best model for B. anthracis using

principal components (PCs) by domain plus the host population variable based on ruminant abundance (i.e. approach 3; Table 1). Maps depict (A) continuous

suitability, (B) uncertainty, and (C) a binary map of suitability using a 5% threshold. Maps were developed using shape files of the world from the public

domain repository of Natural Earth (http://www.naturalearthdata.com/) and built using R Statistical Software (v4.2.1) [26].

https://doi.org/10.1371/journal.pone.0303413.g002
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Discussion

Through the scope of distribution modelling, we found highly suitable regions for B. anthracis
survival in the Black Sea basin; these areas might well benefit from investment and resource

allocation for the control and prevention of anthrax outbreaks. Our model’s predictions agreed

with findings from previous studies conducted at various geographical scales. Suitable areas

identified for anthrax spanned from central to eastern Türkiye, Armenia, southern Georgia,

the southern Russian Federation, Bulgaria, southern and eastern Romania, Hungary, Moldova,

and southern Ukraine. These areas are similar to those found by recent studies exploring the

ecological niche of B. anthracis at a global scale [10, 25], as well as a study specifically focused

on northern latitudes [65]. Additionally, our model found anthrax-suitable areas with low

uncertainty in northeast Azerbaijan, consistent with anthrax spatial clusters observed between

2000 and 2010 [6]; and the Odesa region in Ukraine, converging with a publication reporting

B. anthracis in environmental samples and animal anthrax cases in this area [5]. Finally, we

highlight that although our model did not include anthrax occurrences from Georgia, it accu-

rately predicted the southeastern region of this country as suitable for anthrax, corroborating

previous reports (Pers. Comm. T. Chaligava). However, it was unable to predict similar suit-

ability in central to northern regions of Georgia, where both livestock (Pers. Comm. T. Chali-

gava) and human anthrax cases [66] have been documented.

There is a well-established spatio-temporal link between human and livestock anthrax cases

due to the high occupational nature of anthrax in humans [1]. In this regard, our model cor-

roborates the high incidence of human and livestock anthrax cases found in eastern provinces

of Türkiye, clustering around animal trade centres and large international commercial roads

[67, 68], and linked with livestock trade routes between eastern and western Türkiye and from

the centre Anatolia to the southern and northern parts of the country [68].

In our assessment of Maxent ENMs with various variable combinations, we found that

including ruminant abundance—i.e. biotic variable—improved model performance and was

Fig 3. Suitability versus uncertainty regions for the best-selected model of the potential distribution of Bacillus anthracis. (A) Illustrates the

correlation between continuous anthrax suitability and uncertainty for the best model (Table 1, Fig 2). High uncertainty was defined by a cut-off

set as the third quartile across all uncertainty values (> = 0.23). (B) Depicts the 5% binary output of anthrax suitability with higher (orange) and

lower (ochre) uncertainty. Maps were developed using shape files of the world from the public domain repository of Natural Earth (http://www.

naturalearthdata.com/) and built using R Statistical Software (v4.2.1) [26].

https://doi.org/10.1371/journal.pone.0303413.g003
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an important parameter in selecting the best overall model of anthrax suitability in this region.

This finding emphasizes the importance of incorporating biotic variables in disease distribu-

tion models, highlighting the relevance of biotic interactions in disease systems [24]. Consis-

tent with previous studies, which identified livestock abundance as a significant factor in

anthrax distribution [19, 35, 65, 69–71], our findings further reinforce the role of ruminants as

the most susceptible hosts to B. anthracis, playing a key role in the maintenance and transmis-

sion of anthrax [72].

In our study region, where ruminant production is a critical livestock subsector [73–82],

our model identified suitable areas for anthrax that largely match rural settings where pastoral-

ism is widely practiced [83]. This finding aligns with previous research linking anthrax out-

breaks to rural, ’poor livestock-keeping’ communities and pasture contamination, as

highlighted in a review on neglected and endemic zoonoses [84]. Furthermore, a case-control

study in Georgia found that practices typically associated with commercial farming, such as

keeping animals in covered areas or barns and vaccinating for anthrax within the last two

years, were associated with a lower likelihood of disease occurrence [85]. Similarly, Carlson

et al 2019 [10] suggested higher human anthrax risk in rural areas and observed increased

human and livestock anthrax vulnerability in rainfed systems across arid and temperate land-

scapes in the same region (Eurasia).

Soils and temperature had the highest contribution percentage to our model (Table 1 in S2

File). Chernozem or black steppe-type soils, prevalent in eastern Europe [86] and partially cov-

ering our M region, are rich in organic matter and calcium with a pH above neutral. These soil

characteristics create favourable conditions for anthrax sporulation and persistence [22] and

have been associated with anthrax epidemics [16]. Additionally, our model identified the south-

ern part of the M region, where the mean annual temperature is higher, as suitable for anthrax.

This result aligns with established knowledge that anthrax viability increases in areas with tem-

peratures exceeding 15 ⁰C [3] and is further supported by results from Carlson et al. 2019 and

Walsh et al. 2018 [10, 65]. Furthermore, cumulative anthrax occurrences were higher between

July and October, a period characterized by higher temperatures and drier conditions across the

region [87], which facilitate the mechanical dispersion of anthrax spores [18]. Such temporal

pattern has also been observed in Azerbaijan [88], Türkiye [89] and Kyrgyzstan [90]. During

this time, ruminants graze in local pastures or migrate to summer pastures, and as the grass

shortens, they graze closer to the soil, increasing their risk of exposure to B. anthracis spores

[90]. Moreover, the high temperatures may induce nutritional stress in ruminants, compromis-

ing their immunocompetence and making them more susceptible to the disease [91].

Some of the few anthrax occurrences in the northern M region were missed by our final

model (Fig 3). This discrepancy may be due to the low mean annual temperature at these lati-

tudes, which theoretically hinders anthrax viability [3]. However, during the summer months,

temperatures can still enable significant B. anthracis sporulation [3]. In contrast, Deka et al.
2022 [25] showed “very high” and “high” suitability for anthrax in parts of our northern region

M, diverging from our findings. Additionally, anthrax cases in Ukraine and Belarus were

reported sparingly, likely due to rigorous documentation and management of biothermal pits

and infected burial grounds [5]. These areas are subject to strict legislation prohibiting con-

struction, agricultural and pastoral practices without prior disinfection. The low number of

cases in these countries may also be explained by the prevalence of intensive livestock produc-

tion systems where ruminants are typically confined, and pastoral practices are uncommon,

limiting their exposure to anthrax spores. Nevertheless, despite the current suboptimal envi-

ronmental conditions for anthrax viability in these areas, climate change-led extreme weather

events, such as warmer temperatures, high precipitation and droughts [92] are expected to

increase anthrax risk in the future [25, 65].

PLOS ONE Suitability of anthrax in the Black Sea basin

PLOS ONE | https://doi.org/10.1371/journal.pone.0303413 November 7, 2024 9 / 16

https://doi.org/10.1371/journal.pone.0303413


Beyond environmental determinants, anthrax outbreaks have also been associated with a

range of socio-economic factors including food security, disease awareness, cultural and reli-

gious practices, and access to veterinary services and healthcare. These factors are closely tied

to livestock production practices, such as pastoralism, seasonal movements, disease surveil-

lance capacity, vaccination use and coverage, and the implementation of biosecurity measures

[85]. The emergence and reemergence of anthrax are particularly prevalent in regions affected

by poverty [84]. For instance, eastern Anatolia in Türkiye, with a low gross domestic product

per capita and rural population dependent on agriculture and livestock breeding, has a high

incidence of anthrax, exacerbated by informal animal movements during religious festivities

[67, 93]. Similarly, a case-control study in Georgia found that farmers affected by livestock

anthrax cases had lower education and socioeconomic levels [94]. Further research on the

impact of socioeconomic factors on anthrax risk in livestock and humans would complement

our study and guide targeted interventions in the region.

Our regional-scale map illustrating anthrax suitability complements existing studies target-

ing this region at broader scales [10, 25, 65, 71]. In our study, we explicitly incorporated uncer-

tainty measures into our final predictions, aiming to highlight and define more accurately

potential anthrax suitable areas. The inclusion of uncertainty in the final outputs of ENMs is

seldom implemented [10, 25, 28, 35], and we advocate for its consideration, especially in ENM

studies exploring pathogens.

The modelling strategy applied in our experiment is comprehensive and follows state-of-

the-art approaches for ENM in the study of infectious diseases. Specifically, we used automated

scripts (i.e. kuenm) to explore various Maxent parameters, integrated uncertainty into model

predictions, and tested multiple sets of models at once (Table 1, Fig 2, Fig 1 in S2 File). How-

ever, further refinements are still needed in ENM experiments, and therefore we disclose limi-

tations related with occurrence data treatment and variable and algorithm selection [95]. In

our study, occurrence data was clustered in specific regions, which may have contributed to

model overfitting despite the implementation of occurrence thinning strategies [96]. For this

study, we have used a spatial thinning approach using a ratio of 30 km based on previous stud-

ies [28]. However, evidence on best practices for occurrence thinning is controversial with

experiments in favour and against of thinning strategies [96, 97]. Further research on this

modelling step is granted and potentially will show that a rule-for-all to control for occurrence

autocorrelation is difficult to attain. Additionally, while we included variables that directly

contribute to B. anthracis survival, some might have been overlooked, as any model is ulti-

mately an heuristic representation of reality [16]. Finally, regarding algorithm selection, the

use of multiple algorithms and ensemble modelling as a definitive model remains an open dis-

cussion in the field [98]. For this study, we chose Maxent because it is one of the most compre-

hensively studied algorithms, and its parameterization and model selection strategies have

proven effective in characterizing infectious diseases [12].

Conclusions

Our study identified high-risk areas for anthrax across central and eastern Türkiye, Armenia,

southern Georgia, southern Russia, Bulgaria, southern and eastern Romania, Hungary, Mol-

dova, and southern Ukraine. These findings are critical for prioritizing resource allocation and

implementing anthrax management interventions in the region.

Leveraging uncertainty levels and explicitly including them in our modelling approach

improved the reliability of the potential suitable and non-suitable regions for anthrax identi-

fied in our final maps. We believe this approach also facilitates the interpretability of our

results and enhances their utility for decision-makers and stakeholders.
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The inclusion of ruminant abundance as a biotic variable in our modelling framework

improved model performance, highlighting the importance of host-pathogen interactions in

the study region.

Overall, anthrax poses a significant threat to ruminant production which is essential for the

economies and subsistence of rural populations in the Black Sea region. We anticipate that the

risk maps generated in this work offer comprehensive insights into anthrax distribution in this

region, providing valuable guidance for targeted interventions to mitigate the impacts of this

disease both at veterinary and public health levels.
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Practices in Ecological Niche Modeling: A Basic Guide. Biodivers Inform. 2020; 15: 67–68. https://doi.

org/10.17161/bi.v15i2.13376

56. Radosavljevic A, Anderson RP. Making better Maxent models of species distributions: Complexity,

overfitting and evaluation. J Biogeogr. 2014; 41: 629–643. https://doi.org/10.1111/JBI.12227/FULL

57. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, et al. Cross-validation strategies for

data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 2017; 40: 913–929.

https://doi.org/10.1111/ecog.02881

58. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, et al. ENMeval: An R pack-

age for conducting spatially independent evaluations and estimating optimal model complexity for Max-

ent ecological niche models. Methods Ecol Evol. 2014; 5: 1198–1205. https://doi.org/10.1111/2041-

210X.12261

59. Dodd LE, Pepe MS. Partial AUC estimation and regression. Biometrics. 2003; 59: 614–623. https://doi.

org/10.1111/1541-0420.00071 PMID: 14601762

60. Peterson AT, PapeşM, Soberón J. Rethinking receiver operating characteristic analysis applications in

ecological niche modeling. Ecol Model. 2008; 213: 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.

008

61. Anderson RP, Lew D, Peterson AT. Evaluating predictive models of species’ distributions: criteria for

selecting optimal models. Ecol Model. 2003; 162: 211–232. https://doi.org/10.1016/S0304-3800(02)

00349-6
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